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Mathematical methods of control theory are applied to the problem of control of fluid 
flow with the long-range objective of developing effective methods for the control of 
turbulent flows. The procedure of how to cast the problem of controlling turbulence 
into a problem in optimal control theory is presented using model problems through 
the formalism and language of control theory. Then we present a suboptimal control 
and feedback procedure for general stationary and time-dependent problems using 
methods of calculus of variations through the adjoint state and gradient algorithms. 
This suboptimal feedback control procedure is applied to the stochastic Burgers 
equation. Two types of controls are investigated : distributed and boundary controls. 
The control inputs are the momentum forcing for the distributed control and the 
boundary velocity for the boundary control. Costs to be minimized are defined as the 
sum of the mean-square velocity gradient inside the domain for the distributed control 
or the square velocity gradient at the wall for the boundary control; and in both cases 
a term was added to account for the implementation cost. Several cases of both controls 
have been numerically simulated to investigate the performances of the control 
algorithm. Most cases considered show significant reductions of the costs. Another 
version of the feedback procedure more effective for practical implementation has been 
considered and implemented, and the application of this algorithm also shows 
significant reductions of the costs. Finally, dependence of the control algorithm on the 
time-discretization method is discussed. 

1. Introduction 
The potential benefits of managing and controlling turbulent flows that occur in 

various engineering applications are known to be significant. It is recognized that 
organized structures in turbulent flows play an important role in turbulent transport 
(Cantwell 198 1). Therefore, attempts to control turbulent flows in engineering 
applications have focused on manipulation of coherent structures. 

Many strategies for controlling turbulent flows have been investigated to achieve 
different goals such as drag reduction and heat and mass transfer augmentation. There 
are, in general, many ways of reducing the skin-friction by passive means : riblets, large 
eddy break-up (LEBU) devices, compliant walls, polymer addition, etc. (for a succinct 
summary of this subject, see Bushnell & McGinley 1989). Among them, surface- 
mounted longitudinal grooves in turbulent boundary layers are most successful in 
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reducing net drag, in spite of a substantial increase in the surface area (Bechert & 
Bartenwerfer 1989; Choi, Moin & Kim 1992; Walsh 1983). 

Choi et al. (1992) used the direct numerical simulation technique to explore concepts 
for active control of turbulent channel flow with the goal of drag reduction using 
selective blowing and suction at the wall. The drag reduction (about 20%) was 
accompanied by significant reductions in the intensity of the wall-layer structures and 
reductions in the magnitude of Reynolds stresses throughout the flow. Experimental 
efforts using active (or feedback) control devices to control turbulence are described in 
Bushnell & McGinley (1989). 

When certain aspects of the physics of a problem are well-known, such as the 
existence of organized patterns, one can devise a scheme to manipulate these patterns, 
or at least impede or amplify their formation by preassigned kinematic modifications. 
However, when physics of a phenomenon is not known or is very complicated, it is 
tempting to appeal to the more systematic but less intuitive methods of control theory. 
This is the objective of this work: to provide a framework for systematic control of 
turbulent flows. 

The issue of minimizing turbulence in an evolutionary Navier-Stokes flow was 
addressed from the point of view of optimal control by Abergel & Temam (1990). They 
derived theoretical results for various physical situations. However, the application of 
their optimal control algorithm to the unsteady three-dimensional Navier-Stokes 
equations is not practical due to the great complexity of the algorithm. 

In fact the problem of controlling turbulent flows using control theory is extremely 
difficult. We encounter here two major difficulties which have been addressed by two 
different segments of the scientific community : the control of nonlinear systems, 
studied mostly in the control community, and the problems related to the resolution 
of two- or three-dimensional flows in the presence of turbulence and complicated 
geometries, studied by the fluid mechanics community. 

While the control of linear systems is fairly well understood, the control of nonlinear 
systems remains the subject of active research at this time, even in finite and small 
dimensions. For such applications as the control of flight or the control of industrial 
processes, the objective has been to improve the control processes based on a simplified 
linear description of the process. The basic theoretical as well as practical issue is the 
determination of efficient nonlinear feedback controllers. However, as is well known in 
the fluid mechanics community, nonlinearity leads to complex and often chaotic 
behaviours and linearization of the governing equations produces approximations that 
are only valid for a limited time. 

Nonlinear control theory has been studied by Lions (1971), in his early work on 
distributed systems, i.e. in infinite dimension; he addresses the question of existence of 
an optimal control and the derivation of necessary conditions. Nonlinear control 
theory has been addressed more recently by numerous authors from the point of view 
of H" theory; see, among others, Foias & Tannenbaum (1989) and for the infinite- 
dimensional case Barbu (1992). Feedbacks of nonlinear distributed systems are 
addressed for instance by Banach & Baumann (1990), Byrnes & Gilliam (1991), and 
Kang, Ito & Burns (1991) for the Burgers equation. 

The control of fluid flow itself is a rapidly developing subject which has been already 
addressed by several authors. Beside the work mentioned at the beginning of this 
introduction, emanating mostly from the fluid mechanics community, more the- 
oretically oriented work can be found in a series of articles by Gunzburger, Hou & 
Svobodny (1990, 1991, 1992); in a series of articles by Sritharan and co-authors 
(Sritharan 1991a, b, 1992; Sritharan et al. 1991); and in Abergel & Temam (1990, 
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1992); see also the references above for the Burgers equation and the book edited by 
Sritharan (1992) and the proceedings of the IMA Conference edited by Gunzburger 
(1992). 

Let us summarize for the more mathematically oriented reader the theoretical and 
numerical work done on control of flows. Gunzburger et al. consider various optimal 
control problems (open loop) in fluid mechanics and study mathematical and 
numerical problems such as the existence of optimal controls, necessary optimality 
conditions of the first order, the discretization of these problems by finite elements, 
convergence and error estimates for the discrete problems. Sritharan and co-authors 
consider also mathematical and numerical problems for control of flows. For open- 
loop problems they provide the open-loop control using an appropriate version of the 
Maximum Principle of Pontryagin. They study theoretical questions concerning 
closed-loop problems in relation with the Hamilton-Jacobi-Bellman equation. This 
approach provides in principle the feedback law corresponding to the optimal control 
but necessitates the solution of hyperbolic equations in infinite (or large) dimensions. 
In the articles mentioned above concerning the optimal control of the Burgers 
equation, the authors introduce a feedback law for a related linear problem. The 
solution of the Burgers equation supplemented with this feedback forcing is then 
studied; it is shown that damping is enhanced and this is numerically confirmed for 
solutions of these equations which display a discontinuity (shock). Finally the work of 
Abergel & Temam (1990, 1992), already referred to, concerns theoretical and 
numerical problems for the control of turbulence : for several physically relevant 
situations the problem is set as an optimal control problem, existence of optimal 
control is proved; necessary conditions of optimality are derived; gradient-type 
algorithms are described which require the classic technique of control theory (in 
particular adjoint state and adjoint equations) for their effective implementation. 

The work that we present here departs from the previous works. Instead of searching 
for an optimal control, we address the more practical problem of trying to reduce the 
cost function through a procedure which could be efficiently implemented, i.e. we 
favour effectiveness over optimality. The determination of the cost function is a part 
of the modelling of the control problem. As it is explained later, the cost is a weighted 
sum of the cost generated by the flow that we want to reduce (e.g. the drag force), and 
the cost of the work necessary to implement the control. From the point of view of 
control theory the method that we present here is a suboptimal procedure based on the 
determination, at each instant of time, of the best control among an a priori chosen 
class of feedback controls. For cases in which off-line optimal designs can be 
constructed, the implementation of real-time feedback controllers usually requires 
much more computational power than off-line optimal designs. However, it is quite 
difficult to implement a simple off-line optimal controller for unsteady flows, 
particularly for turbulent flows. The optimal control procedures suggested by Abergel 
& Temam (1990) require the iterative solution of the Navier-Stokes equations and 
their adjoint on the global time period; such computations are out of reach at this time 
(see also Choi et al. 1992). Accordingly, the implementation of off-line and on-line 
optimal controllers for unsteady flows, especially for turbulent flows, is very difficult. 
Hence, as compared to optimal control, our suboptimal feedback procedure does not 
require excessive computer resources because it only requires information at each 
instant of time. At this stage, we do not have any theoretical justification of our method 
from the point of view of control theory, except the good numerical results. 

As a first step towards the solution of the much more difficult problem of controlling 
the Navier-Stokes equations, we consider here the control of systems governed by the 
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Burgers equation. The Burgers equation has been studied extensively both theoretically 
and numerically. It describes the formulation and decay of weak waves in a 
compressible fluid as well as being a one-dimensional model of the Navier-Stokes 
equations. Chambers et al. (1988) showed that the statistics of the solutions of the 
Burgers equation subject to random forcing qualitatively resemble those of the velocity 
fluctuations normal to the wall in the direct numerical simulation of channel flow by 
Kim, Moin & Moser (1987). 

The objective of this study is to develop a feedback control method of minimizing 
a cost function, and to apply that method to the Burgers equation as a first step 
towards application to fluid mechanics problems. The extension of the feedback- 
control algorithm to the Navier-Stokes equations will necessitate more delicate 
developments and more extensive computer resources and will be addressed in the 
future. Section 2 is partly expository and directed to fluid mechanicians not familiar 
with control theory. It shows how to cast the problem of controlling turbulence in a 
channel flow into a problem in optimal control theory, and introduces the formalism 
and language of control theory. Section 3 describes our feedback control algorithm for 
general stationary and time-dependent problems. Also, $3  presents the method for the 
purpose of suboptimal feedback laws when an analytical representation of feedback 
laws, i.e. an explicit functional dependence between the quantity being measured by a 
sensor and the quantity being controlled by an actuator, is difficult. Then in $4 we 
apply this method to the distributed and boundary controls of the stochastic Burgers 
equation. The results of numerous computations with or without control are presented 
and discussed. A computational issue together with practical (or physical) im- 
plementation of the present control algorithm is also addressed in 84. Our method 
depends partly on the time-discretization method for the state equation, namely the 
Burgers equation. Hence we study in this section the effect of the time-discretization 
method on the control algorithms and present the results of the practical control 
algorithm. Conclusions and discussions are given in 5 5.  Appendices A, B and C contain 
some technical details on the implementation of the control algorithms. 

2. Introduction to control theory: some model problems in flow control 
Keeping in mind that turbulent flows are time dependent, we will distinguish 

between stationary and time-dependent flows and start with the case of stationary 
flows. 

2.1.  Stationary channel flow 
Consider a stationary channel flow, where x is the streamwise direction, z is the 
spanwise direction, and the walls are at y = 1. The mass flux is prescribed and is 
equal to M .  Periodicity of velocities and pressure is assumed in the z-direction, and 
periodicity of velocities with an unknown drop of pressure is assumed in the x 
direction. Let u = (ul, u2, us) denote the velocity vector of the fluid, and assume that 
the flow is controlled through blowing and suction at the wall, i.e. through the 
wall-normal velocity at the wall 

where ss q5 dx dz = 0 is imposed so that the mass flux M is constant. It can be shown 
that the stationary Navier-Stokes equations reduce to a functional equation for u (see 
e.g. Temam 1984, 1991) involving 4: 

(2.2) 

4 = % I w ,  (2- 1) 

vAu + R(u, $5) = 0.  
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Here v > 0 is the kinematic viscosity, A is the so-called Stokes operator, and R 
corresponds to the inertial and boundary terms and is a function of u and $ ; R actually 
depends on A4 although the dependence is not made explicit here. 

A typical optimal control problem for equation (2.2) is the following: find the best 
4 such that some observation y = Cu achieves some desired value y, or is at least as 
close as possible to yd, where C is a general linear or nonlinear operator which may 
involve integrals of u and/or derivatives of u. In the language of control theory: u is 
the state of the system and (2.2) is the state equation; $ is the control; y is the 
observation. 

The cost ,function could be, for instance, the function J = J(q5)t 

J(#> = fill q5 I1 + ;m II - Y d  /I z .  (2.3) 

Here im/ IC~-y ,1)~  (m > 0, lICu-y,JJ = L, norm of Cu-y,) accounts for the cost of 
y being different from y,; #q5Il2 ( I  2 0, 11$11 = L, norm of $) is the cost of 
implementing the control itself; l/m is small or zero for cheap controls and large for 
expensive controls. For example, high blowing and suction flow rates are reflected in 
high values of ~ ~ ~ ~ $ ~ ~ z .  High values of Z/m may also be used to empirically account for 
indirect costs such as expensive equipment for realizing fast actuator response. Values 
of I and m in the cost function are dimensional quantities and are usually prescribed 
from a parametric study. Keep in mind, however, that (2.2) is an idealized problem 
which, owing to the absence of turbulence, would only make sense physically for very 
viscous fluids. 

The mathematical formulation of the problem is the following: find q5 which 
minimizes J subject to (2.2), i.e. in the notation used in the optimization theory,$ 

The control q5 can be unrestricted or restricted to some admissible set of controls “21, 
due to physical and technological limitations. 

The methods of calculus of variations indicate that a problem such as (2.4) possesses 
at least one solution and give us some characterizations on the best 4 through the 
adjoint state and some algorithms to reach the best (optimal) control. Feedback theory 
involves constructing q5 as a function of u or some observation of u. Although feedback 
schemes are mainly relevant to time-dependent problems, we can formulate such a 
scheme here. 

Searching for the best feedback in a prescribed class of feedbacks, we reduce the 
problem to a parameter optimization one. For instance, without advocating such a 
choice, we could look for 

q5 = E+Fu, (2.5) 

where E and F are a scalar function on the wall and an operator to be determined, 
respectively. Now problem (2.4) with (2.5) substituted into (2.2) becomes: find E, I; 
which minimize J($) = q E ,  F )  subject to (2.2) and (2.5): 

Inf,, $E, F) .  (2.6) 

t u is a function of d through (2.2), u = u(q5). Hence the second term of J is also a function of $. 
Note that u is the traditional notation for the control in control theory, and it is also commonly used 
for the velocity in fluid mechanics. We use the latter convention here. 

$ In optimization theory Inf+J($) denotes equivalently either the problem of minimizing J(4)  in 
the class of 4 values or the actual value of the corresponding infimum. 
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Instead of (2.5) more general shape functions e,(u), . . . ,8,(u) could be considered with 

The practical importance of these shape functions is discussed in $53.1, 4.3 and 4.4. 
Note that as in (2.5), the 0, are functionals of u and not simple pointwise functions. 
They may involve complex or non-local operations such as differentiation or 
integration of u. The a, are determined through a control algorithm and thus are a 
posteriori functions of u. 

2.2. Time-dependent channel flow 
The state equation is the Navier-Stokes equations including the boundary condition 
(2.1) and other boundary conditions. We infer from the mathematical theory of the 
Navier-Stokes equations (see e.g. Ladyzhenskaya 1963 and Temam 1984, 1991) that 
these conditions and equations amount to an evolution equation of infinite dimension 
for the velocity field u = u(x, t ) .  It reads (compare to (2.2)) 

(2.8) 
au -+vAu+R(u,$)  = 0. at 

Here u is the velocity vector field; again, R accounts for the inertial and boundary 
terms and depends on the mass flux M ,  although the dependence on M is not made 
explicit here. 

The drag is essentially measured on average by D = D(u): 

Here x, = x, x2 = y ,  x3 = z, and xg = y = k 1 are the walls. The choice of the cost 
function is at our disposal and depends on the costs that we want to reduce. If we 
choose to reduce a time average of the drag as expressed by (2.9), then a plausible cost 
function could be 

(2.10) 

where D is a function of q5 through u which itself is a function of 4. A control problem 
like (2.4) can be posed: -find 4 = $(xl, x,, t) which minimizes J subject to (2.8) and 
(2.10) : 

Inf# J(4). (2.1 1) 

The methods of control theory and calculus of variation (Lions 1971), as developed in 
Abergel & Temam (1990), prove the existence of an optimal control (the best q5) and 
produce an algorithm for its determination. However, in their present form, and 
especially for turbulent flows, these classical methods require the iterative solution of 
the Navier-Stokes equations and their adjoint (see $3) on the whole and large interval 
(0 ,T) ;  such computations are out of reach at this time (Choi et al. 1992). Furthermore, 
optimal control of unsteady flows depends on the initial distribution of velocities u ( ~ = ~ ,  
although one would hope that the effects of initial velocities dissipate as T becomes 
large. 
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If (2.8) were linear, the optimal control would be given by a linear feedback law: 
515 

# = E+Fu, (2.12) 
where F is an operator that is the solution of a Riccati-type equation, and E is easily 
determined. When (2.8) is nonlinear, to the best of our knowledge there is no general 
method for constructing the feedback law corresponding to the optimal control even 
for finite and small dimensions (as in flight control), not to mention high- or infinite- 
dimensional problems. There are also no general nonlinear estimators and the solution 
of a control problem could require in principle the repeated solution of the state 
equation with different forcing terms. 

We describe below some empirical and not yet fully mathematically justified 
procedures proposed to address these problems and overcome these difficulties. 

3. Suboptimal control and feedback procedures 
In this section, we present a systematic approach to the mathematical formulation 

of the problem of minimizing a cost function using feedback control and parameter 
optimization procedures. We consider first the stationary case and then the more 
important and more relevant case of time-dependent problems. 

3.1. Stationary problem 
Equations (2.2), (2.3) and (2.4) define an optimal control problem which can be 
satisfactorily solved by a gradient algorithm (although a conjugate gradient method 
would be better, we now restrict ourselves to a gradient algorithm for simplicity). 

The gradient algorithm consists of computing the FrCchet derivative? 

9 J  - 
9 9  

and using the following iterative process for the cost minimization: 

(3.1) 

where $k is a member of a sequence of controls and p is the parameter of descent whose 
optimal value can be found either by a trial-and-error procedure or by relevant 
theoretical studies (see e.g. Luenberger 1973). By Taylor’s formula and (3.2), 

9 J  
.I($””) M J(4”) +- (9”) (4’’’ - $”), 9 9  

(3.3) 

so that the sequence J(@) is clearly decreasing. With the same methods as in Abergel 
& Temam (1990) relying on optimization theory, we can prove that the sequence q5k will 
converge to an optimal control for suitable p if the initial value is chosen sufficiently 
close to an optimal state. 
t When it exists, the Frhchet differential of J in the direction of 6 is defined by (Finlayson 1972) 

JJ = lim 4 4  + 4) - 44)  
2+ E*O & 
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convenient way to compute the Frechet derivative (3.1). Let 
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The introduction of the adjoint state and adjoint state equation produces a 

(3.4) 

where the right-hand side of (3.4) is the Frkhet differential of u with respect to q5 
applied to a test function 6 (of the same type as $). Then, by FrCchet differentiation 
of (2.2), we promptly see that 7 is solution of the equation 

By Frechet differentiation of the functional J in (2.3) and using (3.4) we obtain 

where ( 3 ,  .) indicates the inner product. Define the adjoint state 5 through the 
following adjoint state equation (see e.g. Luenberger 1973) 

In (3.6) and hereafter asterisks indicate adjoint operators with respect to the inner 
product under consideration ( a ,  a ) .  Then 

(W$) -Y ,7  cr> = (Ch(Cu(q5)-Yd)>7) 

Hence, we get 

Since 4 is an arbitrary test function, we deduce that 

and we are in a position to implement the gradient algorithm (3.2) Note that the 
solution of the adjoint equation is used to obtain the Frechet derivative in (3.2). Once 
$k is known, compute the adjoint state Ck by solving (3.6) with q5 = $k and u = 2. 
Obtain q5k+1 from (3.2) using (3.7). Then compute uk+l by solving the state equation 
(2.2) with q5 = @+l, and continue until convergence. 
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3.1.1. Suboptimal feedback laws 
The feedback procedure described above results in the determination of $ as an 

implicit function of u in the entire domain : indeed, in order to update the control input 
q5, one has to solve the adjoint state equation (3.6), in which data on u may be needed 
for the entire domain. However, for the practical implementation of the control 
algorithm such a detailed knowledge of u is not available. Of course, in some control 
problems, in particular in the linear case, the construction of a dynamical model of the 
actual system is quite possible using appropriate filters or state estimators (e.g. Kalman 
filters and compensators), so one may not necessarily need the knowledge of u in the 
entire domain. Given limited data, such state estimators aim to provide important 
dynamic behaviours of the actual systems. However, it is quite difficult to find such a 
dynamical model in nonlinear unsteady flows, especially in turbulent flows. At the end 
of 94, we present a method to avoid a detailed knowledge of u for the boundary control 
of the stochastic Burgers equation. 

If the control $ is explicitly determined from measurable quantities, it will be much 
easier to construct feedback control devices. Such feedback laws are pursued in this 
subsection. Physically a feedback law amounts to a formula relating the quantity being 
measured by a sensor such as pressure or stresses or temperature to the quantity being 
controlled by an actuator such as blowing rate at the boundary. 

In the previous subsection, we indicated how to determine q5 which minimizes the 
cost. For most nonlinear control problems, $ has an implicit dependence on u, i.e. q5 
cannot be represented as an explicit function of u. However, it may be possible, from 
physical intuition or experience, that feedback laws for $, q4 = $(u), can be constructed 
which produce a reduction of costs. For example, in the drag reduction study by Choi 
et al. (1992), control relations such as $ = -uz12/+~10 and q5 = a,a/ax,(au,/ax,)l, give 
a significant reduction of drag, where $ is the blowing and suction at the wall, uz and 
u3 are the normal and spanwise velocities, respectively, and a1 is a constant. Here, we 
present a quite general framework which should be able to accommodate even the 
experimental experience gained from the physical observation of unsteady flows. 

Suboptimal feedback laws can be implemented in a similar manner by looking for 
the best feedback, 

in a particular class of functions corresponding to a suitable approximation of (3.8) 
$ = q5(u), (3.8) 

where O,(u) is prescribed from physical intuition or experience, and a. and a1 are 
determined through a control algorithm and thus have an implicit dependence on u, i.e. 
a. = a,(u) and a, = al(u). In fact, (3.9) contains two elements of (2.7) (Oo(u) = 1). As we 
have already mentioned, O,(u) can be a simple function of u or it can be a complicated 
functional involving integrals or derivatives of u. For example, 8,(u) can be the velocity 
derivative at the wall which can be measured directly in the physical implementation 
of the control algorithm and, thus, O,(u) represents the quantity that is measured using 
suitable sensors in the control process. Note that, when 8, = 0 (no input from the 
physical experience), the optimization problem is the initial control problem (2.4). 
Hence, the optimization problem with 0, = 0 produces the optimal control but it does 
not provide an explicit feedback law. The feedback law in (3.9) can be obtained from 
control theory for linear optimal or suboptimal problems (see (2.12)). For nonlinear 
control problems, however, if the function e,(u) cannot be determined by control 
theory, it can be specified by physical intuition. The proper choice of 8, may produce 
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simple expressions for a, and a1 (e.g. constant values). Such a feedback will be certainly 
easy to implement. One of our objectives, therefore, is to inquire whether one can 
determine a, and a1 as explicit functions of measurable quantities which can be 
prescribed a priori in practical implementations. 

For a feedback of this type, set e = (a,, al}. The cost function J is chosen to be a 
function J”of a. and a, through (2.3) and (3.9)f: 

(3.10) 

The analogue of the gradient algorithm (3.2) consists of constructing two sequences 

- 
J(e) = t l  I I e 11 + tm I I Cu - yd 11 ’, 

where lIe1l2 = ll%Il2+ 11~1112. 

mi, a:, recursively defined by 

(3.11) 
9.7 9J” 

9 a 0  9% a?’ - at = - po - (a:, a:), a:+, - a: = - p1 - (at, a:). 

Note that the parameters of descent p > 0 are chosen differently in the two equations 
(3.1 1). 

The introduction of the adjoint state and adjoint state equation again produces a 
convenient way to compute the FrCchet derivatives in (3.11). Let us define 7 first, using 
the Frechet differential in the direction of e  ̂ = {go, kl> 

where 

(3.12) 

Then, by Frechet differentiation of (2.2), we promptly see that q is the solution of the 
equation 

or 

By Frkhet differentiation of (3.10) using (3.12) we obtain 

Define now the adjoint state 5 through the following adjoint state equation: 

c =  C*(Cu-7,). 

(3.13) 

(3.14) 

t We implicitly assume that f i e )  is finite. If this is not true for all e in the considered class of 
feedbacks, we discard those for which J(e) is infinite. Note that this difficulty does not arise in the 
discretized problem. 
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Then by the same procedure as before we get 

Since 6, and 2, are arbitrary test functions, we deduce that 

and we are in a position to implement the gradient algorithm (3.11). Note that the 
solution of the adjoint equation is used to obtain the FrCchet derivatives in (3.11). Once 
a! and a: are known, compute the adjoint state ck by solving (3.14) with Q, = #k and 
u = uk. Obtain a:" and at+' from (3.11) using (3.16). Then compute uk+l by solving 
the state equation (2.2) with #'+I given by (3.9), and continue until convergence. 

3.2. Time-dependent problem 
We now consider the case of time-dependent problems. The suboptimal procedure that 
we propose in this case consists of the following: 

(i) discretize the state equation in time; 
(ii) at each instant of time, the discretized equation is a stationary one to which the 

above procedure is applied, while the cost function is an instantaneous version of (2.10) 
(i.e. no time averaging, see (3.20)). 

This procedure means that, at each instant of time, we are directing the flow in a 
direction that produces the decay of the instantaneous cost function. Of course, there 
is no reason to believe that the controls will be optimal, or even that the cost will 
actually decay in the long range. However, the numerical experiments conducted in the 
case of the stochastic Burgers equation and the other model problems (not reported 
here) show that indeed the cost function decreases significantly without being 
monotonically decreasing all the time (see 44 for the Burgers equation). 

Consider the evolution state equation (2.8); again, this could be the original 
Navier-Stokes equations for channel flow. For step (i) we consider here the 
Crank-Nicolson method : 

U n  - un-l 

At +iv(Au" + Au"-l) +i(R(u", qY) + R(Un-1, p')) = 0, (3.17) 

which we rewrite as d u +  W"(U, $) = 0, (3.18) 

with u = u", # = #", and 

1 (3.19) 
d u  = U" +$vat Aun, 

Bn(un, $n)  = - u"-' +$At(vAu"-' + R(u", $n) +R(u"-', Q,"-')). 1 
At each step n, the cost function J is still given by (2.3): 

(3.20) 
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with un a function of $"(= un($")) through (3.17)-(3.19). Note that for a sufficiently 
small At there exists a unique solution un to (3.17). Hence the difficulty of non- 
uniqueness of solution for (2.2) does not arise for (3.18). 

The adjoint state is defined as in (3.4)-(3.6): 

d * Y +  -(U",$") [ =  C*(Cu"-y,), (Z )* 
The gradient algorithm (3.2) now reads 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

where $ " v k  is a member of a sequence of controls at a given time step II, p is the 
parameter of descent, and k Is the iteration index at each time step. By Taylor's 
formula, as in (3.3), for all n,k, 

J(q5". kfl) d J(qin. '), 

and as k --f 00, 
necessarily true that the minimum of Jn decreases as n increases, i.e. for all n, 

converges to $n which achieves the minimum of J". It is not 

J" < Jn-l. (3.25) 

Using the property of the adjoint operator as has been done in previous subsection, 
we obtain 

(3.26) 

and we are in a position to implement the gradient algorithm (3.24). Note that the 
solution of the adjoint equation is used to obtain the FrCchet derivative in (3.24). Once 
qP' is known, compute the adjoint state 6vk by solving (3.23) with $n = $n*k and 
U" = ungk. Obtain $n,k+l from (3.24) using (3.26). Then compute unvkcl by solving the 
state equation (3.18) with $" = 

Suboptimal feedback laws for the time-dependent problem can be implemented in a 
manner similar to that described in 3 3.1.1.  

and continue until convergence. 

4. Application to the stochastic Burgers equation 
As a first step towards application to the problems in fluid mechanics, the feedback 

control procedures described in $ 3  are applied to the Burgers equation subject to 
random forcing. This equation contains nonlinear convection and diffusion terms and 
its solution exhibits a chaotic nature; these qualities make it a natural model for the 
more complicated Navier-Stokes equations. We first specify the form of the Burgers 
equation that we consider (34.1). Then we show how to implement our feedback 
procedure for distributed and boundary control problems ($4.2) and present and 
discuss the results of our numerical experiments (54.3). The form of the effective 
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FIGURE 1.  Instantaneous velocity profiles. (a) Re = 500, At, = 0.1 ; (b) Re = 1500, AtT = 0.1 ; 
(c)  Re = 4500, Atr = 0.1; (d )  Re = 4500, At, = 1. 

feedback law is discussed in 54.4. We also discuss several implementation issues 
(discretization of the equation and practical implementation of the feedback procedure) 
in $4.5. 

4.1. The Burgers equation with random forcing 
Consider the randomly forced Burgers equation with no-slip boundary conditions 

I aii a ii2 azi i  -+;- = v,+j(X,?), a l  ax 2 ax 
0 < 1 < L, 

a(n = 0) = ii(l = L) = 0, J 
where u" is the velocity, v the kinematic viscosity, 2 the random forcing, and L the length 
of the computational domain. In the absence of forcing @ = 0), the solutions of (4.1) 
decay to zero from any bounded initial data. 

is a white noise random process in X with zero mean (see 
Chambers et al. 1988; Bensoussan & Temam 1972, 1973). The mean-square value of 
the dimensional forcing, cr2, defines a velocity scale U = (aL);. The Burgers equation 
in non-dimensional form using U and L as the typical velocity and length reads 

The forcing function 

au a u2 1 a2u -+-- = - 7 + x ( x ,  t),  0 < x < 1, 
at ax 2 Reax 

u(x = 0)  = u(x = 1) = 0, 

where u, x, t and x are dimensionless quantities, Re is the Reynolds number ULIv, and 

(x>, = 0, (x">, = 1. (4.3) 

Here ( -), denotes the average value over space. A Crank-Nicolson method in time 
and second-order centred differences in space are used to discretize (4.2). A Newton 
iterative method is used to solve the discretized nonlinear equation. 
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FIGURE 2. Mean-velocity profiles. (a) Atr = 0.1 : -, Re = 500; ----, Re = 1500; 
-.- , Re = 4500; (b) Re = 4500: -, At, = 0.01; ----, At, = 0.1; ---, Atr = 1 .  

In the following Zdenotes the number of grid points, At the computational time step, 
Ax = l/(I- l), ur M u((i- l )Ax,nAt) ,  &’ M x((i- l )Ax,nAt) ,  and i = 2, ..., I -  1 .  At 
each instant of time n At, the x: are uncorrelated random variables; x; is constant on 
a time interval (pAt,, ( p  + 1) At,.), where p is an integer, and if n At and n’ At belong 
to two different such intervals, all the xj”’ are independent of all the x: (n’ > n), with 

The solution of the Burgers equation with random forcing (equation (4.2)) depends 
not only on the Reynolds number Re, but also on the mean-square value (x’), and the 
timescale At, of the random forcing. For all calculations presented here, (x), = 0, 
(xz)>, = 1, and At = 0.001, which is the largest time step which accurately predicts the 
small-scale motion with the values of Re and At, used in our calculations. A uniform 
computational mesh of 2048 point is used in x (Ax = 1/2047). Three different Reynolds 
numbers, Re = 500,1500,4500, and three different timescales, Atr = 0.01,O. 1 , 1 , are 
investigated. Instantaneous velocity fields for these Reynolds numbers and two of the 
timescales are shown in figure 1. Strong thin internal shocks can be seen for high Re 
and large At,. Figure 2 shows the effect of the Reynolds number Re and the timescale 
At, on the mean velocity. The magnitudes of the mean velocity and the mean velocity 
gradient clearly increase with increasing Re and Atr. Owing to the convective nature of 
the solution of the Burgers equation, the wall-layer thickness gets thinner as the 
Reynolds number increases (figure 2 4  also see Chambers et al. 1988). The mean 
velocity gradient near the centreline, however, is not much changed with the Reynolds 

(x3, = 0 and ((x:)2>z = 1. 
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number. On the contrary, increasing Atr with a fixed Reynolds number significantly 
increases the mean velocity gradient near the centreline as well as near the wall layer 
(figure 2 b). Wall-layer thickness, however, is not affected by increasing Atr. 

4.2. Feedback control procedures 
Two types of feedback controls are investigated : distributed and boundary controls. 
Distributed control by body forces corresponds to the unrealistic case where volume 
forces are applied throughout the fluid; however it turns out to be a good introduction 
to more interesting and more complicated situations. It also contains all of the basic 
features of general control problems. For boundary control the control is the boundary 
velocity, which is more practical in fluid mechanics and can be implemented in real 
situations. 

4.2.1. Distributed control Vormulation) 
The non-dimensionalized Burgers equation with distributed control is 

au a u2 1 a2u -+-- = - y + x ( x ,  t)+f(x,  t),  0 < x c 1 ,  at ax 2 Reax 

u(x, t = 0) = uo(x), (4.4) 

u(x = 0, t )  = 0, u(x = 1 ,  t )  = 0. 

Here x is the random forcing and u, the initial data, an instantaneous solution of the 
Burgers equation with random forcing x andf= 0 (equation (4.2)). The control input 
forcing f is of the form 

Here O,(u) is prescribed from physical intuition or experience (see @ 3.1.1 and 4.3), and 
a0 and a1 are determined through our control algorithm and thus have an implicit 
dependence on u. Note that a, and a1 are not constant in time and space and they are 
continuously updated with the change of u. 

f = cIo + a1 O,(u). (4.5) 

At each instant of time, the cost function considered is 

where lle1I2 = lla,1l2+ lla1112. Here we want to reduce the mean-square velocity gradient 
inside the domain at the expense of the control input. The choice of la and ma (or more 
precisely of the ratio ld/md) is an engineering problem which is not addressed here, 
although we do consider in our computations several values of this ratio. The detailed 
procedure of distributed control by body forces is described in Appendix A. 

4.2.2. Boundary control Cformulation) 
The non-dimensionalized Burgers equation with boundary control is 

(4.7) 

au a u2 I a2u -+-- = - 7 + x ( x ,  t), 0 < x < 1, at  ax 2 Reax 

u(x, t = 0) = u,(x), 

u(x = 0, t )  = eo(t), u(x = 1, t )  = @,(t). 

au a u2 I azu -+-- = - 7 + x ( x ,  t), 0 < x < 1, at  ax 2 Reax 

u(x, t = 0) = u,(x), 

u(x = 0, t )  = eo(t), u(x = 1, t )  = @,(t). 

(4.7) 

Here x is the random forcing and uo is the initial data, which is an instantaneous 
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solution of the Burgers equation with random forcing x and $o = $l = 0 (equation 
(4.2)). The control input velocities at the boundary, $r0 and are of the form, 

$0 = "0.0 + a1 ,o  81, o(u), 1c.l = ao, 1 + El, 1 81,1(4. (4.8) 
We denote a,, = ((L~,~,  t ~ ~ , ~ ) ,  al = {al,o, C Z ~ , ~ ) ,  and O1 = (61,0, 01, J. Here the 8,(u) are 
prescribed from physical intuition or experience (see 553.1.1 and 4.3), and the a. and 
a, are determined through a control algorithm and thus have an implicit dependence 
on u. Note that the a, and a, are not constant in time and they are continuously 
updated with the change of u. 

At each instant of time, the instantaneous cost function considered is 

(4.9) 

where lle/I2 = Ilao/12 + llall[2. Here we want to reduce the wall velocity gradient at the 
expense of the control input. The detailed procedure of boundary control by boundary 
velocities is described in Appendix B. 

4.2.3. Numerical algorithm 

numerical algorithm of minimizing the cost function J" : 

U n , k - l  = u"-l. Choose initial a;sk-l and aYsk-'. 

From the previous subsections, we can write for both control problems the 

Step 1 :  Start with an initial condition uo or a solution of the previous time step 

Step 2: Solve the adjoint equation with ~ " , ~ - l ,  andfn,"' or $"s IC-l to obtain r,k-l. 
Step 3 : Update at* IC and a:, IC .  

Step 4: Solve the discretized Burgers equation withf"Yk or $",I, to obtain ~ ~ 9 ~ .  

Step 5 :  Iterate Steps 2 4  until u"rk converges. 
Step 6 :  When converged, u" = ~ " 3 ~ .  

4.3. Results of numerical simulation 
Values of 1 and m in the cost function ((4.6) and (4.9)) are dimensional quantities and 
are usually prescribed from a physical setting of the actual systems (see 92.1 and 
above). Also the problem can be scaled by l/m. Once 1 and m are given, we need to find 
the best p (the parameter of descent). We do it by trial and error instead of by 
theoretical procedures (see e.g. Luenberger 1973). Note that conjugate gradient 
methods can be used to eliminate the unnecessary trial-and-error procedure and also 
to get faster convergence. 

As mentioned in detail in 0 3.1.1, for many cases feedback laws are in general hard 
to obtain from a mathematical approach, and one must resort to physical intuition or 
experience for a better result or for a simple feedback law. The reasons for using the 
formulations (4.5) and (4.8) rather than using a simple formulation ( f = f ( u )  or $ = 
~ ( u ) )  are two-fold. First, the formulations (4.5) and (4.8) can accommodate experience 
and physical observations. Second, they can accommodate a good feedback law if we 
prescribe a proper el(u). 

We consider two cases for functions 8, in (4.5) and (4.8): O1 = 0 and 8, + 0. (Here, 
for simplicity we let the functions, t91,0 and in (4.8), be equal to a same function 
now denoted 8,; hence both ends, x = 0 and x = 1, play the same role.) We call the 
former non-prescribed feedback control because in that case the control input itself (f 
or $) does not have any information from physical experience and is determined 
directly from a mathematical approach. Note that non-prescribed feedback control 
still yields a relation between u and qi Cfor $) because the a, are continuously updated 
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FIGURE 3 .  Velocity profiles: ----, time-averaged mean velocity U with no control and 
Re = 1500, Atr = 0.01; -, initial velocity uo for distributed and boundary controls. 

from our optimization procedures which need information on u (see 94.4 on actual 
feedback laws). Since there are two different parameters po, p1 in the case 8, =l 0, many 
trial-and-error iterations are needed to find the best po and pl. Non-prescribed 
feedback control (8, = 0) is first investigated to find the best po; the best is p1 is then 
searched while holding a. = 0. For most cases considered in the following, non- 
prescribed feedback control is better at finding a local minimum of the cost function 
in the sense that non-prescribed feedback control gives faster and more stable 
convergence. However, we believe that this is not always the case since it depends on 
the function type el and the cost J as well as on the gradient algorithm. In some other 
situations or with a different choice of the shape function (the class of feedback laws), 
the results may turn out to be better. Most of the results presented below were obtained 
for the non-prescribed feedback control case; some of the cases with dl =k 0 are also 
presented. 

In this section, we only discuss the results of the cases with Re = 1500 and AtT = 
0.01. Cases with different Reynolds number (Re = 4500) and different AtT (= 0.1) have 
also been tested, and the results show the same trend. Figure 3 shows the time-averaged 
mean velocity U of the no-control case with Re = 1500 and Atr = 0.01 and the initial 
velocity uo used in the following controls. 

4.3.1. Numerical results for  distributed control 
Two types of shape function 8, (equation (4.5)) were investigated: 8, = 0 (non- 

prescribed feedback control), and O1 = u. Concerning the parameters Id and md, we 
have chosen quite arbitrarily to study the following cases: (i) la = 1, md = 1; (ii) 
Ed = 1, md = 2047(= l/Ax); (iii) ld = 1, md = 4 . 2 ~  lo6(= 1/Ax2); (iv) 1, = 0, ma = 1. 

Results with control were compared to those with no control. A set of random values 
of the momentum forcing was stored and used for both the control and no-control 
cases for the accurate estimation of the parameter p. Case (i) showed almost no change 
of the cost when control was applied. When the ratio of the weight parameters, m d / f d ,  

is small, the input cost becomes so expensive that there is no means of reducing the 
total cost by addition of controls. 

With non-prescribed feedback control (0, = 0), optimal values po of 1, 0.001 and 
10000 were found for cases (ii), (iii), and (iv), respectively. Effects of the parameter of 
descent po on the cost function and its convergence are shown in figure 4. Larger cost 
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FIGURE 4. Variation of the cost and its convergence with respect to the parameter of descent po for 
case (ii). (a) 0, No control; 0, po = 0.1; A, po = 1; +, po = 1.69; (b) at t = 0.002, 0, po = 0.01; 0, 
Po = 0.1; a, Po = 1. 

J or divergence of the solution was obtained for po larger than the optimal po, and 
slower convergence was achieved for smaller po. Case (ii) needed about six iterations 
to converge (figure 4b). Cases (iii) and (iv) need many more iterations (about 50) to 
converge. From the practical point of view, however, it is not necessary to get a 
converged solution since a few iterations give a significant reduction of the cost 
function. 

Figure 5 shows the time history of the cost, energy (= J,'fu2dx), wall velocity 
gradient, and momentum forcings (random input x and control inputf) at x = 0.5 for 
case (ii). Figure 6 shows the same for case (iii). Results of case (iv) are essentially the 
same as those of case (iii). It can be seen that the distributed control significantly 
reduces the cost as well as the energy inside the domain (see figures 66 and 74. 

Since one of the effects of control is to cancel or attenuate the effects of random 
forcing, it is interesting to investigate a case with no random forcing and no control 
(x =f= 0) and the same initial velocity uo, and compare the results to those with 
control. Temporal evolution of cost and energy, and velocity profiles at t = 2 with no 
random forcing and no control (x = f= 0) are compared with control cases (ii) and (iii) 
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FIGURE 6. Time history of flow parameters for case (iii): -, with control; ----, without control. 
(a) Cost; (b) energy inside the domain; (c) wall velocity gradient au/ax(x = 0); ( d )  momentum 
forcings at x = 0.5: --, control forcingf; ----, random forcing x. 

in figure 7. Energy and costs rapidly decrease and the velocity profile is smoothed when 
there is no random forcing. The control simply attenuates the effect of the random 
forcing for case (ii). Case (iii), however, shows that the control can do more than cancel 
the effects of random forcing. 

The case dl = u was tested next. By setting a, = 0 in case (ii), the best p1 was searched 
for. pI = 2 gave a larger cost and p1 < 1 gave no change of cost as compared to the no- 
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FIGURE 7. Temporal evolution of flow parameters and velocity profiles with and without random 
forcing and control. (a) Cost with 1, = 1 and md = ~ / A X :  -, x = f = 0 ;  ---- , f = O a n d x + O ;  
-.- , control (case ii); (b) cost with la = 1 and ma = 1/Ax2: ~ , jy =f= 0;  - , f = O  and 
x + 0; ---, control (case iii); (c) energy inside the domain: -, x = f = 0; ~ , f = 0 and 
x + 0; -.-, control (case ii); . . . . . . , control (case iii); ( d )  instantaneous velocity profiles at t = 2 :  
-, x = f = 0 .  ---- , f = 0 and x =k 0; -.-, control (case ii); . . . . . . , control (case iii). 

control case. The sensitivity of the cost function with respect to the control variables 
is a good indicator of the effectiveness of the control variables in reducing the cost. As 
equation (A 7) suggests, the sensitivity is a function of not only the time step (n) but 
also the iteration (k). Convergence of the sensitivity with fixed n is strongly dependent 
on the parameter p, but the temporal evolution of the sensitivity at the first iteration 
is nearly independent of p. The magnitudes of the sensitivities of the cost functions for 
cases (ii) and (iii) were measured with the parameters pa = p1 = 1 for case (ii), and 
po = p1 = 0.001 for case (iii). The sensitivity with respect to a1 was at least two orders 
of magnitude smaller than that with respect to a. (figure 8). 

4.3.2. Numerical results for boundary control 
For simplicity, the functions el, and O,, in (4.8) are taken to be the same so that 

both ends, x = 0 and 1, play the same role (61,0 = el,,  = 6,). 
Three types of such shape function 8, were investigated?: 8, = 0 (non-prescribed 

feedback control), 0, = &/ax, and 13, = (au/ax>/[l+ ( a u / a ~ ) ~ ] ] .  Concerning the 
parameters 1, and mb, we have chosen quite arbitrarily to study the following cases : (i’) 
lb = 1, mb = 2 . 5 ~  Ax’); (ii’) lb = 1, mb = 5 x  lop4((= Ax); (iii’) lb = 1, mb = 1; 
(iv’) lb = 0, mb = 1. 

Results with control were compared to those with no control. A set of random values 
of the momentum forcing x was stored and used for both the control and no-control 

t Again these choices were based on physical intuition but, as explained hereafter, the results are 
not satisfactory. The last function was chosen to limit the magnitude of 8, to less than one; in this 
way one can expect equation (4.8) to be a more accurate truncation of the Taylor series expansion 
of *w 
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cases for the accurate estimation of the parameter p. All cases except (i') showed a 
significant reduction of the cost when control was applied. Case (i') showed no 
reduction of the cost since mb was very small relative to lb. With non-prescribed 
feedback control, optimal values po of 0.001, lop6 and were found for cases (ii'), 
(iii'), and (iv'), respectively. Effects of po on the cost function and the sensitivity are the 
same as those described in the distributed control subsection. Cases (ii'), (iii') and (iv') 
needed about seven iterations to converge. 

Figure 9 shows the time history of the cost, energy, wall velocity gradient, and 
velocity profile at t = 2 for case (2). Figure 10 shows the costs of cases (iii') and (iv'). 
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FIGURE 10. Time history of the cost: -, with control; ----, without control. 
(a) Case (iii’); (b) case (iv’). 

Temporal evolutions of the energy, wall velocity gradient, and velocity profiles of cases 
(iii’) and (iv’) are quite similar to case (2). In contrast to distributed control, the energy 
inside the domain is changed little though the cost and au/ax at the wall are reduced 
significantly. The velocity profile at t = 2 shows that boundary control modifies the 
flow field only near the wall. A longer time integration up to t = 100 has been 
completed for case (iii’). Again only the wall region is modified. 

One may think that a fixed non-zero wall velocity (passive control) may reduce the 
cost or au/ax at the wall and may even give more of a reduction than does boundary 
control. Several fixed non-zero wall velocities, u(x = 0) = -us, u(x = 1) = us, were 
tested in order to study the effect of a slip velocity at the wall, where us was taken from 
0 to 0.1 (for the relative scale of the velocity, see figure 3). All cases considered showed 
a negligible reduction or a significant increase of the cost. We also used the time- 
averaged value of the control wall velocities obtained from the feedback control 
algorithm as a fixed wall velocity. The cost reduction was again negligible. 

As described at the beginning of this subsection, we tested two more shape functions : 
8, = au/ax and = (au/ax)/(l +(au/ax)’)>. By setting a0 = 0 in case (ii’), the best p1 
was searched for. For the function 8, = &/ax, the simple gradient algorithm was 
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unstable and did not converge. For the function 8, = @u/ax)/(l+ p1 = 0.001 
gave a reduction of the cost but converged more slowly than the non-prescribed 
feedback control case. Larger values of p1 give either a larger cost or divergence of the 
solution. The sensitivity of the cost function with respect to the control variables was 
measured with po = p1 = 0.001. The sensitivity with respect to a, was about an order 
of magnitude smaller than that with respect to a,. 

4.4. Remarks on the feedback laws 
Physically a feedback law amounts to a formula relating the quantity being measured 
by a sensor to the quantity being controlled by an actuator. Here some comments are 
made on the choice of the feedback laws. As indicated before, our control is optimal 
among a prescribed class of feedback laws: see e.g. (2.5), (2.7) and (3.9) in the 
stationary case and similarly (4.5) and (4.8) in the time-dependent case. Our choices of 
the feedback laws, i.e. the functionals 19, or Oi,, in (2.7), (4.5) and (4.8), were fully 
arbitrary because of the lack of similar results in the literature. Surprisingly the most 
efficient feedback laws were ‘the non-prescribed ones’, i.e. those where the control q5 
does not explicitly depend on the state u. Hence at first sight there is no feedback, but 
this is not actually true since the feedback is hidden in the history of the flow. 
Concerning the feedback laws we would like to emphasize here the phase diagrams of 
the solutions using non-prescribed feedback control for cases (ii’) and (iii’) in figure 1 1. 
Here one of the controls (wall velocity) is plotted against one of the observations 
directly related to the cost function, namely the velocity gradient au/ax at the wall. 
These phase diagrams can be considered as the actual feedback laws resulting from our 
method. A linear feedback law is achieved for case (ii’), whereas no apparent relation 
is found for case (iii’). For cases (iii’) and (iv’), the wall velocity gradients are nearly 
zero irrespective of the magnitude of control wall velocities (figure 11 b). Therefore, a 
linear feedback law between wall velocity and wall velocity gradient is not found for 
cases (iii’) and (iv’). A feedback law for case (ii’) is deduced from figure 11 : 

@(x = 0) = (X = 0), U ~ ( X  = 1) = ( X  = l), (4.10) 

where t = n At. A natural and puzzling question resulting from the feedback laws in 
(4.10) was whether we could by pass our procedure and directly implement a boundary 
condition of the type (4.10) 

au an  
u(x = 0) = A-(x  ax = O ) ,  u(x = 1) = h’-(x ax = I), (4.1 1) 

with h and A’ equal or close to f0.533 as in (4.10). We found that numerical 
instabilities were developing : once the wall velocity obtained from (4.1 1) deviates 
slightly from the value used in actual control procedures, the wall velocity gradient at 
the next time step is significantly increased compared to the feedback control case. 
Hence the actual boundary condition resulting from control algorithm is indispensable 
for stability. 

4.5. Further remarks on implementation issues 
We make here two further remarks on implementation issues: one is related to the 
effect of the time-discretization method and the other is related to some aspects of the 
gradient algorithm. 

4.5.1. Remarks on the time-discretization method 
It is clear that, in the time-dependent case, the time discretization of the evolution 
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FIGURE 11. Phase diagram of control velocity and velocity gradient at the wall for the time interval 
0 c t < 2: 0, at x = 0;  +, at x = 1. (a) Case (ii’); (b) case (iii’). The phase diagram of case (iv’) is 
nearly same as that of case (iii’). Note that the wall velocity gradients of case (iii’) are much smaller 
than those of case (ii’). 

equation strongly affects (3.18) and therefore our whole procedure. In the most 
extreme case where a fully explicit scheme is used, our method cannot be implemented 
at all. Hence we have found it important to test our method with various classical 
forms of time discretization. We have already presented the control procedure resulting 
from a fully implicit discretization of the Burgers equation using a Crank-Nicolson 
scheme (see (3.17)). We have also tested our procedure in the case of boundary control 
using another fully implicit method (implicit Euler) and a semi-implicit method 
(Adams-Bashforth for the nonlinear term and Crank-Nicolson for the viscous term). 

In the case of the boundary control using a fully implicit method, the adjoint 
equation (B 4) contains all the interior velocities as well as the boundary velocities (or 
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FIGURE 12. Variation of the cost and sensitivity with respect to time-discretization methods for case 
(ii’). (a) Time history of the cost: -, with control; ----, without control using a semi-implicit 
method. The result of using a fully implicit method is the same as that of using a semi-implicit 
method. (b) Convergence of the sensitivity at t = 0.001 : with a semi-implicit method, -, 

----, 19J/9uo,J; with a fully implicit method, -*-, 19J/9ao,ol; . * . . . ., l9J/9a0,J .  

boundary velocity gradients). Hence, a full knowledge of the flow field would be 
required for the implementation of the control algorithm, which is highly impractical 
for physical implementation. On the other hand, in the case of the boundary control 
using a semi-implicit method (Adams-Bashforth for the nonlinear term and 
Crank-Nicolson for the viscous term), one can circumvent this problem. The feedback 
procedure for the Burgers equation using this semi-implicit method is presented in 
Appendix C. The resulting adjoint equation (C 2) does not contain any velocities 
except the wall velocity gradients. Figure 12 shows the time history of the cost and 
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FIGURE 15. Time history of the cost and wall velocity gradient with k = 1 for case (iv'): (a) cost; (b) 
wall velocity gradient. Atr = 0.01, At = 0.001, and p = 8 x lo-' are used. Mean values of the cost in 
cases with and without controls are 0.291 and 2.241, respectively. 

Case No control k =  1 k = 2  k = 7  
J x  10% 1.098 0.4409 0.3183 0.3053 
Reduction of J - 60 % 71 Yo 72 Yo 
TABLE 1. Variation of the cost with respect to the iteration k for case (3). 

convergence of the sensitivity for case (2)  ( I b  = 1, mb = Ax). Essentially the same result 
is obtained as with a fully implicit method; the convergence behaviour is only slightly 
changed. 

4.5.2. Practical implementation of the control algorithm 
From the practical point of view, sensors and actuators must be placed at the wall. 

In this respect, the boundary control is more realistic than the distributed control. 
As mentioned above, when the semi-implicit method is used, the resulting adjoint 
equation (C 2) does not contain any velocities except the wall velocity gradients, while 
all interior velocities should be measured when a fully implicit method is used. Hence, 
for the practical implementation of the feedback control algorithm, one has to resort 
to the semi-implicit method. 

Also, it should be pointed out that all previous computations were carried out until 
the cost reached a minimum at each time step n, which required about seven iterations 
at each time step. However, in practical situations, the number of iterations k should 
be limited to one. This is because in a physical setting awlax at the boundary at a given 
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FIGURE 16. Time history of the cost and wall velocity gradient with k = 1 for case (ii'): -, with 
control; ----, without control. (a) Cost; (b) wall velocity gradient. Atr = 0.1, At = 0.001, and p = 
0.001 are used. Mean values of the cost in cases with and without controls are 0.000325 and 0.00246, 
respectively. 

instant is used to obtain the control input velocity which leads to a new velocity field 
at the next instant in time with the corresponding au/ax at the boundary. Physically 
one cannot use the new data on auli3.x at the boundary to go back in time and refine 
the input velocity . 

In this section, we investigate the effectiveness of the control algorithm with the 
iteration k set equal to one, the Reynolds number, Re = 1500, and the computational 
time step, At = 0.001. Figures 13 and 14 show the time history of the cost and wall 
velocity gradient for various iterations k for case (ii') ( I ,  = 1, mb = Ax) .  Here, the 
timescale of the random forcing, Atr,  is set to be 0.01. Reductions of the cost as well 
as the wall velocity gradient are accomplished with a few iterations. Table 1 shows the 
mean value of the cost and percentage reduction of the cost. The cost is significantly 
reduced with k = 1, and the reduced cost with k = 2 is nearly the same as that with 
k = 7, the maximum reduction of the cost. Figure 15 shows the time history of the 
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cost and wall velocity gradient with k = 1 for case (iv’) ( lb  = 0, mb = 1). Again, a cost 
reduction of 87% is found with only one iteration. Note that in case (iv’) the control 
input cost is not included into the total cost, i.e. a cheap control. 

In order to investigate the effect of the random-forcing timescale on the efficiency of 
the control scheme, a larger timescale, At, = 0.1 was used. Time history of the cost and 
wall velocity gradient with k = 1 for case (3)  (1, = 1, mb = Ax) is shown in figure 16. 
The effect of random forcing on the wall velocity gradient is clearly seen. A cost 
reduction of 87 ‘YO is obtained by the control, which is clearly larger than in the case of 
At, = 0.01, where a cost reduction of 60% was obtained. The control scheme with 
k = 1 adjusts to sudden changes in the flow in a short time to create a cost reduction. 
Here, the random-forcing timescale is a flow timescale, and the computational time 
step is considered the control timescale. Clearly, it should be much easier to get a cost 
reduction if the flow timescale is much larger than the control timescale. The numerical 
experiments with two different Atr show that this is indeed the case. 

5. Conclusions and discussion 
Some avenues for the application of the mathematical methods of control theory to 

the problem of control of fluid flow have been presented. The problem of controlling 
turbulence was considered and posed as a problem in optimal control theory using the 
methods, formalism and language of control theory. We have presented a new 
suboptimal control and feedback procedure, which applies to fairly general cost 
functions and fairly general time-dependent equations including in particular stochastic 
equations. This procedure was not strictly justified but did produce good numerical 
results and is fairly simple. 

Feedback control procedures were applied to the stochastic Burgers equation. Two 
types of controls were investigated : distributed and boundary controls. Even though 
distributed control by body forces is rather unrealistic, it turns out to be a good 
introduction to more complicated situations. For boundary control, the control is the 
boundary velocity, which is more practical and can be implemented in real situations. 

Several case studies of both types of controls have been completed to investigate the 
performance of the control algorithm: the reduction of cost, convergence of the 
gradient algorithm, dependence of the sensitivity of the cost function with respect to 
the control variables, effect of the parameter of descent, and choice of the form of the 
feedback law. Most cases considered showed a significant reduction of cost. 

The role of the preassigned form of the feedback law was discussed in $5 3.1.1 and 
4.4. The feedback procedures considered in the present study depend on the time- 
discretization method used. One would hope that the control results are insensitive to 
such numerical considerations. Numerical experiments show that this may indeed be 
the case. 

The semi-implicit method seems most promising for future and more involved 
applications. Indeed, for boundary control using a fully implicit method the adjoint 
equation, (B 4), contains all interior velocities as well as the boundary velocities (or 
boundary velocity gradients) so that the feedback control algorithm may not be 
practical: that is, a full knowledge of the flow field would be required for the 
implementation of the control algorithm when there exists no successful state estimator 
for the system. However using the semi-implicit method, one can circumvent this 
problem. The resulting adjoint equation (C 2) with the semi-implicit method does not 
contain any velocities except the wall velocity gradients. Practical implementation of 
the control algorithm developed here may be possible with the restriction of only one 
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iteration (k  = 1) at each instant of time. The effectiveness of the control algorithm with 
one iteration was investigated : cases considered still showed a significant reduction of 
cost. 

The result of the application of this semi-implicit scheme to the Navier-Stokes 
equations cannot be predicted at this time even though the scheme was very successful 
for the Burgers equation. The mathematical analysis of this topic and the application 
of feedback control to the Navier-Stokes equations are in progress and will be reported 
in the future. 

Financial support from the Air Force Office of Scientific Research under Contract 
No. AFOSR-89-0411 is gratefully acknowledged. We also thank Mr Thomas Bewley 
for useful comments on a draft of this manuscript. 

Appendix A. Distributed control of the Burgers equation 
The Burgers equation with distributed control is shown in (4.4). Crank-Nicolson in 

time and second-order centred difference in space are used to discretize it. The 
analogue of (3.18), then, reads 
with u = un, f = f", and 

d u + W n ( u , f )  = 0, 

d u  = q--- w+1- 2u: + e l ) ,  
1 1 At 
2 Re Ax2 

1 At 1 At 
8 Ax 8 Ax 

Wn(u , f )  = - - ( ~ ~ + , ~ - ~ ~ - ~ ~ ) - ~ A t f l - ~ f - ' + - - ( ~ ~ ~ ~ ~ - ~ ~ ~ ~ ~ l t ) - ~ A t ~ - ~  

- 2u;-l+ @I:) -$At(X: + x:-'), 1 1 At 
2ReAx2 a'1 

-__- 

where fl" = a;, + a;, Or, {, and i = 2, . . ., I -  1. From (4.6), the cost function becomes 

I-l (ur+l - u:y I-1 

J(en) = $la (at, i 2  + a:, i 2 )  ++md 
P-2 6-1 Ax 

where K, = 901 /9u ,  and i = 2, ..., I- 1. For distributed control, 8, is usually taken to 
be u. In that case, K~ = 1. The analogue of (3.13), then, reads 
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Using the property of the discrete adjoint operator (e.g. d: = si&) the analogue of 
(3.14) is 

g = S ( x  = 0) = 0, 6 = S(x = 1) = 0, 
where i = 2, ..., I -  1. 

The directional derivative of J (equation (3.15)) is 

The analogue of the gradient algorithm equation (3.11) consists of constructing two 
sequences a:. ', recursively defined by 

(A 6 )  1 n k+1 = ,n,k- 
%,'i 0,6 PO('d ar,f +imd At c' "1, 
a n . k f l  1, i = a::/-f31(kdU::/+imd At fY:;f c*"), 

where k is the iteration index, po, p1 > 0, and i = 2, . . ., I -  1. 

described by 
The sensitivity of the cost function with respect to the control variables can be 

(~J/9a,,,)(a:;p,a:~,k) = l d u ~ ; f + + m d A t ~ * " ,  1 
( 9 J / 9 a l ,  i) (a:;/, a:;,k) = kd a:;! ++md At 0:;: c*", ) (A 7) 

where i = 2 ,  ..., I-1. 

Appendix B. Boundary control of the Burgers equation 
The Burgers equation with boundary control is shown in (4.7). Crank-Nicolson in 

time and second-order centred difference in space are used to discretize (4.7). The 
analogue of (3.18), then, reads 

d u  + ayu, $-) = 0, 
with u = un, q? = v, and 

1 1 At u~----((u?+~ -22.4; +u:-~) for i = 2, ..., I -  1 ; 
for i =  1; 
for i = I,  

2ReAx2 

(u?;: - 2~:-'+ @;') - iA.t(xp + x;-l) 
1 1 At 
2 Re Ax2 

for i = 2, ..., I -  1; 
- @.," for i =  1; 
- @l" for i = I ,  

18-2 

Wn(U, II.) = 
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where @; = at, +a:, , e:, f, and j = 0,l. From (4.9), the cost function becomes 
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99 ng'1 n - wa1-g - [  

From (B 1) and (B 2),  we find 

- C Z : , ~ K : , ~ - ( X  aTn = 0) for i =  1; ax 

Here we assumed that 0, = e,(au/ax). Hence 

where K~ = 90 , /9 (au /ax) .  The analogue of (3.13), then, reads 

1 At 

where i = 2 ,  ..., 1-1. 
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Using the property of the discrete adjoint operator (e.g. d$ = the analogue 
of (3.14) is 

1 At 

2)c+l=0 for i = 3  ,..., I-2, (B4a) 1 At 1 1 At ( ~ A X  ‘ 2ReAx + -__- 

==(-ut+u:) 1 for 

(-u:+u:) for 1 
Ax2 

= -- 

i =  1, (B4b) 

i = 2 ,  (B4c) 

1 1 At 1 At 
2 Re Ax2 

1 
= D(-uy+uy-l) for i = I- 1,  (B 4d) 

( - U ~ + U ; - ~ )  for i = I .  (B4e) 1 
Ax2 

- - -- 

The directional derivative of J (equation (3.15)) is 

The analogue of the gradient algorithm equation (3.1 1) consists of constructing two 
sequences at, k, a:, ’, recursively defined by 

l. an, k: - at: t -pO(‘bat; ,k+mb cf;l’”>9 q1”” = 0 , l  pO(‘b + mb c’ k>, an,k+l = 
0 , o  

an ,k+ l  1.0 = a?;~-pl(lba:;t+mbc,ke:::), a?;:+’ = an,k-p 1 , l  1 ( I  b an,k+m 1 , l  b p k e n p k )  I 1 , l  9 J 
(B 6) 

The sensitivity of the cost function with respect to the control variables can be 
where k is the iteration index, and po,pl > 0. 

described by 

(B 7) 
where j = 0 , l .  
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